Evaluating Igusa functions

نویسندگان

  • Reinier Bröker
  • Kristin E. Lauter
چکیده

The moduli space of principally polarized abelian surfaces is parametrized by three Igusa functions. In this article we investigate a new way to evaluate these functions by using Siegel Eisenstein series. We explain how to compute the Fourier coefficients of certain Siegel modular forms using classical modular forms of halfintegral weight. One of the results in this paper is an explicit algorithm to evaluate the Igusa functions to a prescribed precision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Simple Igusa Local Zeta Functions

The objective of this announcement is the statement of some recent results on the classiication of generalized Igusa local zeta functions associated to irreducible matrix groups. The deenition of a simple Igusa local zeta function will motivate a complete classiication of certain generalized Igusa local zeta functions associated to simply connected simple Chevalley groups. In addition to the no...

متن کامل

The Igusa local zeta functions of elliptic curves

We determine the explicit form of the Igusa local zeta function associated to an elliptic curve. The denominator is known to be trivial. Here we determine the possible numerators and classify them according to the KodairaNéron classification of the special fibers of elliptic curves as determined by Tate’s algorithm.

متن کامل

On the Connection between Igusa Local Zeta Functions and Generalized Exponential Sums

This paper considers a formula for Weil’s Generalized Exponential Sums which depends entirely upon the singularities modulo π, similar to the purpose of the Stationary Phase Formula (SPF) for Igusa Local Zeta Functions (ILZF). Unlike the formula discussed in this paper, the SPF for ILZF also requires one to examine the points where the function evaulates to zero modulo π; this paper shows where...

متن کامل

Motivic Igusa Zeta Functions

Let p be a prime number and let K be a finite extension of Qp. Let R be the valuation ring of K, P the maximal ideal of R, and K̄ = R/P the residue field of K. Let q denote the cardinality of K̄, so K̄ ≃ Fq. For z in K, let ord z denote the valuation of z, and set |z| = q . Let f be a non constant element of K[x1, . . . , xm]. The p-adic Igusa local zeta function Z(s) associated to f (relative to ...

متن کامل

Quasi-ordinary Power Series and Their Zeta Functions

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function ZDL(h, T ) of a quasi-ordinary power series h of arbitrary dimension over an algebraically closed field of characteristic zero from its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014